Economic Benefits of the Second Civilian GPS Signal (L2C)

Civil GPS Service Interface Committee Fort Worth, TX September 25, 2006

Jason Y. Kim, Senior Policy Analyst
Office of Space Commercialization
National Oceanic and Atmospheric Administration
U.S. Department of Commerce

Overview

- **Background**
- Approach
- Findings
- Conclusion

Second Civilian GPS Signal (L2C)

- Announced by White House in 1998
- Designed to meet commercial needs
 - Benefits thousands of existing high-end receivers
 - Increases accuracy for lower-end users
 - Improves availability in challenged environments
- Implemented on eight GPS IIR-M satellites
 - First one declared operational in Dec 2005
 - Second launch: Sep 2006
- Included on all future GPS satellites
- Free signal and technical documentation

Example Applications That L2C Will Benefit

- Agriculture
- Construction
- Intelligent Transportation Systems
- Wireless Telecommunications
- Structural Monitoring
- Natural Resource Conservation

U.S. Industry Celebration of L2C

Overview

- Background
- > Approach
- Findings
- Conclusion

L2C Study

- Initiated in late 2004 with funding from DOC/NOAA, DOT, and IGEB
 - Project Director: Rodney Weiher, NOAA Chief Economist
 - Principal Investigator: Irving Leveson
- Objective: Quantify economic benefits of the new L2C signal through the year 2030

Approach to Benefit Measurement

- Benefits measured according to the economic productivity approach which includes productivity gains and cost savings
 - Vs. the typical economic impact approach
- Incremental benefits and user costs defined as the differences from what would be expected in the absence of L2C
- Benefits may be attributable to specific users or spread over a large population
- Market and non-market benefits included

Elements of the Analysis

- Examining potential applications and their benefits to users and the public
- Constructing alternative context scenarios that incorporate developments in signal availability, markets and competing and complementary systems
- Projecting numbers of users, benefits, and user costs for each scenario
- Computing present discounted values and benefit/cost ratios
- Risk/sensitivity analysis

Context Scenarios

High Opportunity

- Timely signal availability
- Larger than expected markets
- High complementarity with L5
- Success of High Accuracy NDGPS
- Full Galileo deployment in 2012 with less than complete technical performance

Moderate Benefits

- Timely L2C availability
- Large potential markets
- Benefits moderated by competition from other signals and augmentations
- Full Galileo deployment in 2011

Diluted Benefits

- Large potential markets
- Gradual L2C deployment and uncertainty about schedules slows investment in innovation and market development
- Improvements in public and private augmentations make single signal use more attractive

Opportunity Lost

- Late signal initiation and protracted pace of L2C deployment
- Moderately large potential market size, moderate effects of availability of other signals and delay in Galileo FOC to 2011
- Attractiveness of augmentations

Overview

- Background
- Approach
- > Findings
- Conclusion

Productivity Benefits of L2C Are Likely to Exceed \$5 Billion

Most Benefits Will Result from Combining L2C with Other Signals

Economic Benefits Accrue Early for Dual Frequency Users

Benefit/Cost Ratio Is High Under All Scenarios

Overview

- Background
- Approach
- Findings
- **Conclusion**

Conclusions

- Economic benefits of L2C were estimated in terms of productivity gains minus equipage costs
 - Non-monetary benefits to society were also included
- Net benefits range between \$1.6B and \$9.6B through 2030, depending on scenarios
 - Most likely scenario: \$5.8B
- The bulk of economic benefits will result from combining L2C with other signals
- Benefits may be up to 20× equipage costs

Read the Complete Article

- Published in July/August 2006 issue of *Inside GNSS*
- Link to free electronic version available at <u>PNT.gov</u>

Contact Information

Office of Space Commercialization National Oceanic and Atmospheric Administration U.S. Department of Commerce 6818 Herbert C. Hoover Building Washington, D.C. 20230

www.nesdis.noaa.gov/space space.commerce@noaa.gov (202) 482-6125

Backup

Study Assumptions

- L2C + L1 C/A will provide an alternative to augmented single frequency GPS
- L2C will be used in multi-frequency applications with L5 and/or Galileo signals
- L2C has its greatest potential to generate benefits:
 - For dual frequency applications until alternative signals are widely utilized
 - For long term use as a third frequency
- Dates of GPS signal availability
 - Dates of 24 and 18 satellites for each signal based on best information available during the study year 2005
 - To enable analysis, assumes approximately straight line of deployment
- Assumed Galileo FOC dates as indicated in each of the context scenarios
- Capabilities of public and private augmentations will continue to improve